Thursday, September 3, 2020

Solon essays

Solon papers Solon could be known as the Abraham Lincoln of his time. Where he didn't go as far with vote based system as we did he is one of its first establishing fathers. The inception of the Athenian vote based system of the fifth and fourth hundreds of years can be followed back to Solon, who prospered in the years around 600 BCE. Solon was a writer and an astute legislator. (Microsoft Corporation, 2000) Besides the laws he composed Speeches to the People and Exhortations to himself in elegiacs, and the sonnets on Salamis and Athenaion Politeia, additionally Iambics and Epodes. Verse was for Solon an approach to engage himself. He additionally utilized verse to give his thoughts simple access to the psyches of the Athenians. Solon was conceived in a respectable family, as a youngster he occupied with outside and monetary conditions in Greece. During an emergency in Greece many free Athenian little ranchers, who couldn't pay their obligations were auctions into servitude to take care of their obligations. Solon was chosen archon, or boss judge, to help change the abusive conditions that were going on in Greece in 594BCE. (Microsoft Corporation, 2000) Solon promptly excused every single exceptional obligation, and he liberated the same number of Athenians as he could from the servitude they had sold themselves into. He restricted any credits that are made sure about by a guarantee to go into bondage if the advance is defaulted, and he attempted to bring individuals who had been sold into subjugation abroad back to Athens. From the start, the two groups were disappointed with these measures, the rich at being stripped of their credit protections, poor people at Solon's inability to reallocate land or to direct a carefully equivalent style of living on all residents. Be that as it may, they before long understood the upsides of Solon's strategies, and conceded him diplomat forces to reexamine the constitution and code of law. Solon revoked the laws of Dracon, which rebuffed even little offenses with death, so it was said that the laws of Dracon were written in blood rather than ink. Solon reser ... <!

Saturday, August 22, 2020

Metropolitan Steel Corporation Research Paper Example | Topics and Well Written Essays - 2000 words

Metropolitan Steel Corporation - Research Paper Example Senior supervisor Administration, Human Resources, Marketing and Production, Mr. Iqbal Jamil Abbasi takes care of the Administration, Marketing, Human Resource and Production. He has done his Masters in Management from the Asian Institute of Management, Philippines, and was in the board unit, Pakistan Steel Mills Limited for a long time. Mr. Iqbal Jamil Abbasi was exceptionally helpful in giving amazing data about Metropolitan Steel. He was incredibly agreeable and given the entirety of the necessary data. Following is the arrangement of inquiries, which were asked from Mr. Abbasi during the meeting; There is irregularity winning in the world of politics because of regularly changing strategies and insecure political situation. Each Government comes in with another arrangement of rules, which are impracticable to execute, in this way making problems as opposed to encouraging the procedures. Another downside is the ever-reducing coordination between various legislative offices with widespread defilement. In any event, for a reasonable arrangement pay off must be advertised. Because of the accompanying reasons monetary strategies towards ventures are not good: Pakistan steel used to expand costs at each short spending plan, which brought about low net revenue for MSC prompting resulting shortfall. Presently, MSC's arrangement has been altered and item cost has been identified with the expansion in costs of Pakistan Steel billets. And still, after all that much of the time expanded costs may brings about crossing out of the requests there by compelling a misfortune on both the client and the maker. At the point when crude materials are imported, they cost a large portion of the cost than that of Pakistan

Friday, August 21, 2020

Chinese Food Essay

Chinese food has a long history with over 5,000 years. Diverse region has distinctive sort of cooking. Likewise, unique style of cooking has distinctive trademark. Chinese food covers a great deal of the heavenly tastes from everywhere throughout the nation. In the first place, Cantonese cooking is tasty and alluring, which is forever my preferred style of dishes. Cantonese cuisine’s trademark is sweet, unique and light. It lays significance on the food’s high newness. (About) You can see there are many living fish which will be slaughtered and made of a dish when the client requires. Plus, Cantonese cooking has numerous sorts of food, as shumai. Shumai is loaded up with principally of pork, dark mushroom, green onion and ginger with seasonings of Chinese rice wine. (Wikipedia) It tastes extremely tasty with a salt and smooth taste. It appears the word â€Å"mouthfeel† was designed for it. It is the run of the mill and conventional nourishment for Cantonese. Each time I go to Cantonese café, Shumai is the dishes that I will pick naturally. Additionally, Shumai is consistently the apotheosis of Cantonese food in my brain. Second, Sichuan cooking has a long history. Sichuan cooking has a truly long history and it very well may be gone back to the time of Qin Dynasty. (Wikipedia) Nowadays, Sichuan food has been well known for everywhere throughout the world. What's more, Sichuan eateries exist in numerous zones on the planet. Indeed, even President Obama additionally appreciates this sort of heavenly food. (Z&Y café) Sichuan cooking basically utilizes soy sauce, vinegar and sauce. Without these relishes, the flavor of Sichuan food will debase. Additionally, the style of Sichuan food is new and straightforward. (Wikipedia) For me, Sichuan food is constantly fiery and invigorating. The dishes are straightforward, yet they can give me a feeling of delight and solace. Sichuan food has a truly long history and now is acclaimed everywhere throughout the world. Third, other than Chinese food’s scrumptious, it is likewise useful for body constitution. I have ever observed many court play on TV that numerous sovereigns would let his cooks to make medication diet. Likewise, now and again my folks will include some conventional Chinese medication into the soup. Despite the fact that I don’t have foodie inclinations, I grew up adoring this sort of soup. These days, numerous new dietary treatment cooking styles are made, with acceptable taste and impact. By eating medication diet, I grow up steadily and emphatically. Taking everything into account, Chinese food covers numerous sorts of delectable food. Also, it is the shrewdness of Chinese individuals. I am extremely glad for it. Later on, I accept that Chinese food will go on another stage and can be valued by individuals everywhere throughout the world. Reference Wikipedia. (n. d. ). Shumai. Recovered November 19, 2012, from http://en. wikipedia. organization/wiki/Shumai#Serving About. (n. d. ). Cantonese cooking. Recovered November 19, 2012 from http://chinesefood. about. com/od/cantonesecuisine/p/profile. htm Z&Y café. (n. d. ). Gourmet expert Han. Recovered November 19, 2012 from http://www. zandyrestaurant. com/en/file. html Wikipedia. (n. d. ). Diet treatment. Recovered November 19, 2012 from http://zh. wikipedia. organization/wiki/%E8%97%A5%E8%86%B3.

Tuesday, June 16, 2020

Different welding techniques - Free Essay Example

CHAPTER 1: INTRODUCTION 1.1 INTRODUCTION OF THE FSW TECHNIQUE In todays modern world there are many different welding techniques to join metals. They range from the conventional oxyacetylene torch welding to laser welding. The two general categories in which all the types of welding can be divided is fusion welding and solid state welding. The fusion welding process involves chemical bonding of the metal in the molten stage and may need a filler material such as a consumable electrode or a spool of wire of the filler material, the process may also need a inert ambience in order to avoid oxidation of the molten metal, this could be achieved by a flux material or a inert gas shield in the weld zone, there could be need for adequate surface preparations, examples of fusion welding are metal inert gas welding (MIG), tungsten inert gas welding (TIG) and laser welding. There are many disadvantages in the welding techniques where the metal is heated to its melting temperatures and let it solidify to form the joint. The melting and solidification causes the mechanical properties of the weld to deteriorate such as low tensile strength, fatigue strength and ductility. The disadvantages also include porosity, oxidation, microsegregation, hot cracking and other microstructural defects in the joint. The process also limits the comb ination of the metals that can be joined because of the different thermal coefficients of conductivity and expansion of different metals. The solid state welding is the process where coalescence is produced at temperatures below the melting temperatures of the base metal with out any need for the filler material or any inert ambience because the metal does not reach its melting temperature for the oxidation to occur, examples of solid state welding are friction welding, explosion welding, forge welding, hot pressure welding and ultrasonic welding. The three important parameters time, temperature and pressure individually or in combinations produce the joint in the base metal. As the metal in solid state welding does not reach its melting temperatures so there are fewer defects caused due to the melting and solidification of the metal. In solid state welding the metals being joined retain their original properties as melting does not occur in the joint and the heat affected zone (HAZ) is also very small compared to fusion welding techniques where most of the deterioration of the strengths and ductility begins. Dissimila r metals can be joined with ease as the thermal expansion coefficients and the thermal conductivity coefficients are less important as compared to fusion welding. Friction stir welding (FSW) is an upgraded version of friction welding. The conventional friction welding is done by moving the parts to be joined relative to each other along a common interface also applying compressive forces across the joint. The frictional heat generated at the interface due to rubbing softens the metal and the soft metal gets extruded due to the compressive forces and the joint forms in the clear material, the relative motion is stopped and compressive forces are increased to form a sound weld before the weld is allowed to cool. Friction stir welding is also a solid state welding processes; this remarkable upgradation of friction welding was invented in 1991 in The Welding Institute (TWI) [4]. The process starts with clamping the plates to be welded to a backing plate so that the plates do not fly away during the welding process. A rotating wear resistant tool is plunged on the interface between the plates to a predetermined depth and moves forward in the interface between the plates to form the weld. The advantages of FSW technique is that it is environment friendly, energy efficient, there is no necessity for gas shielding for welding Al, mechanical properties as proven by fatigue, tensile tests are excellent, there is no fume, no porosity, no spatter and low shrinkage of the metal due to welding in the solid state of the metal and an excellent way of joining dissimilar and previously unweldable metals. 1.2 ALUMINUM ALLOYS AND WELDING OF ALUMINUM ALLOYS Aluminum is the most abundant metal available in the earths crust, steel was the most used metal in 19th century but Aluminium has become a strong competitor for steel in engineering applications. Aluminium has many attractive properties compared to steel it is economical and versatile to use that is the reason it is used a lot in the aerospace, automobile and other industries. The most attractive properties of aluminum and its alloys which make them suitable for a wide variety of applications are their light weight, appearance, frabricability, strength and corrosion resistance. The most important property of aluminum is its ability to change its properties in a very versatile manner; it is amazing how much the properties can change from the pure aluminum metal to its most complicate alloys. There are more then a couple of hundreds alloys of aluminum alloys and many are being modified form them internationally. Aluminium alloys have very low density compared to steel it has almost on e thirds the density of steel. Properly treated alloys of aluminum can resist the oxidation process which steel can not resist; it can also resist corrosion by water, salt and other factors. There are many different methods available for joining aluminum and its alloys. The selection of the method depends on many factors such as geometry and the material of the parts to be joined, required strength of the joint, permanent or dismountable joint, number of parts to be joined, the aesthetic appeal of the joint and the service conditions such as moisture, temperature, inert atmosphere and corrosion. Welding is one of the most used methods for aluminum. Most alloys of aluminum are easily weldable. MIG and TIG are the welding processes which are used the most, but there are some problems associated with this welding process like porosity, lack of fusion due to oxide layers, incomplete penetration, cracks, inclusions and undercut, but they can be joined by other methods such as resistance welding, friction welding, stud welding and laser welding. When welding many physical and chemical changes occur such as oxide formation, dissolution of hydrogen in molten aluminum and lack of color change when heated. The formation of oxides of aluminum is because of its strong affinity to oxygen, aluminum oxidizes very quickly after it has been exposed to oxygen. Aluminum oxide forms if the metal is joined using fusion welding processes, and aluminum oxide has a high melting point temperature than the metal and its alloys it self so it results in incomplete fusion if present when joined by fusion welding processes. Aluminum oxide is a electrical insulator if it is thick enough it is capable of preventing the arc which starts the welding process, so special methods such as inert gas welding, or use of fluxes is necessary if aluminum has to be welded using the fusion welding processes. Hydrogen has high solubility in liquid aluminum when the weld pool is at high temperature and the metal is still in liquid state the metal absorbs lots of hydrogen which has very low solubility in the solid state of the metal. The trapped hydrogen can not escape and forms porosity in the weld. All the sources of hydrogen has to be eliminated in order to get sound welds such as lubricants on base metal or the filler material, moisture on the surface of base metal or condensations inside the welding equipment if it uses water cooling and moisture in the shielding inert gases. These precautions require considerable pretreatment of the workpiece to be welded and the welding equipment. Hot cracking is also a problem of major concern when welding aluminum, it occurs due to the high thermal expansion of aluminum, large change in the volume of the metal upon melting and solidification and its wide range of solidification temperatures. The heat treatable alloys have greater amounts of alloying elements so the weld crack sensitivity is of concern. The thermal expansion of aluminum is twice that of steel, in fusion welding process the melting and cooling occurs very fast which is the reason for residual stress concentrations. Weldability of some aluminum alloys is an issue with the fusion welding processes. The 2000 series, 5000 series, 6000 series and 7000 series of aluminum alloys have different weldabilities. The 2000 series of aluminum alloys have poor weldability generally because of the cooper content which causes hot cracking and poor solidification microstructure and porosity in the fusion zone so the fusion welding processes are not very suitable for these alloys. The 5000 series of aluminum alloys with more than 3% of Mg content is susceptible to cracking due to stress concentration in corrosive environments, so high Mg alloys of 5000 series of aluminum should not be exposed to corrosive environments at high temperatures to avoid stress corrosion cracking. All the 6000 series of aluminum are readily weldable but are some times susceptible to hot cracking under certain conditions. The 7000 series of aluminum are both weldable and non-weldable depending on the chemical composition of the alloy. Alloys with low Zn-Mg and Cu content are readily weldable and they have the special ability of recovering the strength lost in the HAZ after some weeks of storage after the weld. Alloys with high Zn-Mg and Cu content have a high tendency to hot crack after welding. All the 7000 series of aluminum have the sensitivity to stress concentration cracking. All these problems associated with the welding of these different alloys of aluminum has lead to the development of solid state welding processes like Friction Stir Welding technique which is an upgraded version of the friction welding processes. This process has many advantages associated with it, and it can weld many aluminum alloys such as 2000 and 7000 series which are difficult to weld by fusion welding processes. The advantages of the Friction Stir Welding processes are low distortion even in long welds, no fuse, no porosity, no spatter, low shrinkage, can operate in all positions, very energy efficient and excellent mechanical properties as proven by the fatigue, tension and bend tests. 1.3 Conventional Welding Processes of Aluminum A brief description of the most common processes, their applications on aluminum and limitations are given below. 1.3.1 Gas Tungsten Arc Welding (GTAW): In gas tungsten arc welding process the heat generated by an arc, which is maintained between the workpiece and a non-consumable tungsten, electrode is used to fuse the joint area. The arc is sustained in an inert gas, which serves to protect the weld pool and the electrode from atmospheric contamination as shown in Figure 2.3. The process has the following features: It is conducted in a chemically inert atmosphere; The arc energy density is relatively high; The process is very controllable; Joint quality is usually high; Deposition rates and joint completion rates are low. The process may be applied to the joining of a wide range of engineering materials including stainless steel, aluminum alloys and reactive metals such as titanium. These features of the process lead to its widespread application in aerospace, nuclear reprocessing and power generation industries as well as in the fabrication of chemical process plant, food processing and brewing equipment. 1.3.2 Shielded metal arc welding (SMAW): Shielded metal arc welding has for many years been one of the most common techniques applied to the fabrication of steels. The process uses an arc as the heat source but shielding is provided by gases generated by the decomposition of the electrode coating material and by the slag produced by the melting of mineral constituents of the coating. In addition to heating and melting the parent material the arc also melts the core of the electrode and thereby provides filler material for the joint. The electrode coating may also be used as source of alloying elements and additional filler material. The flux and electrode chemistry may be formulated to deposit wear- and corrosion-resistant layers for surface protection as shown in Figure 2.4. Significant features of the process are: Equipment requirement are simple; A large range of consumables are available; The process is extremely portable; The operating efficiency is low; It is labor intensive. For these reasons the process has been traditionally used in structural steel fabrication, shipbuilding and heavy engineering as well as for small batch production and maintenance. 1.3.3 Plasma welding: Plasma welding uses the heat generated by a constricted arc to fuse the joint area; the arc is formed between the tip of a non-consumable electrode and either the work piece or the constricting nozzle as shown in Figure 2.5. A wide range of shielding and cutting gases is used depending on the mode of operation and the application. In the normal transferred arc mode the arc is maintained between the electrode and the work piece; the electrode is usually the cathode and the work piece is connected to the positive side of the power supply. In this mode a high energy density is achieved and the process may be used effectively for welding and cutting. The features of the process depend on the operating mode and the current, but in summary the plasma process has the following characteristics: Good low-current arc stability Improved directionality compared with GTAW Improved melting efficiency compared with GTAW Possibility of keyhole welding The keyhole technique is the high heat concentration can penetrate completely through the joint. These features of the process make it suitable for a range of applications including the joining of very thin materials, the encapsulation of electronic components and sensors, and high- speed longitudinal welds on strip and pipe. 1.3.4 Laser welding The laser may be used as an alternative heat source for fusion welding. The focused power density of the laser can reach 1010 or 1012 Wm-2 and welding is often carried out using the keyhole technique. Significant features of laser welding are: Very confined heat source at low power Deep penetration at high power Reduced distortion and thermal damage Out-of-vacuum technique High equipment cost These features have led to the application of leaders for micro joining of electronic components, but the process is also being applied to the fabrication of automotive components and precision machine tool parts in heavy section steel. 1.4 Weld Defects using Conventional Processes Because of a history of thermal cycling and attendant micro structural changes, a welded joint may develop certain discontinuities. Welding discontinuities can also be caused by inadequate or careless application of established welding technologies or substandard operator training. The major discontinuities that affect weld quality are described below. 1.4.1 Porosity: Trapped gases released during melting of the weld area and trapped during solidification, chemical reactions during welding, or contaminants, cause porosity in welds. Most welded joints contain some porosity, which is generally spherical in shape or in the form of elongated pockets. The distribution of porosity in the weld zone may be random, or it may be concentrated in a certain region. Porosity in welds can be reduced by the following methods: Proper selection of electrodes and filler metals. Improving welding techniques, such as preheating the weld area or increasing the rate of heat input. Proper cleaning and preventing contaminants from entering the weld zone. Slowing the welding speed to allow time for gas to escape.8 1.4.2 Slag inclusions: Slag inclusions are compounds such as oxides, fluxes, and electrode-coating materials that are trapped in the weld zone. If shielding gases are not effective during welding, contamination from the environment may also contribute to such inclusions. Welding conditions are important, and with proper techniques the molten slag will float to the surface of the molten weld metal and not be entrapped. Slag inclusions may be prevented by: Cleaning the weld-bead surface before the next layer is deposited by using a hand or power wire brush. Providing adequate shielding gas. Redesigning the joint to permit sufficient space for proper manipulation of the puddle of molten weld metal. 1.4.3. Incomplete fusion and penetration: A better weld can be obtained by: Raising the temperature of the base metal. Cleaning the weld area prior to welding. Changing the joint design and type of electrode. Providing adequate shielding gas. Incomplete occurs when the depth of the welded joint is insufficient. Penetration can be improved by: Increasing the heat input. Lowering travel speed during welding. Changing the joint design. Ensuring that surfaces to be joined fit properly.8 1.4.4 Weld profile: Weld profile is important not only because of its effects on the strength and appearance of the weld, but also because it can indicate incomplete fusion or the presence of slag inclusions in multiple-layer welds. Under filling results when the joint is not filled with the proper amount of weld metal Figure 2.7. Undercutting results from melting away the base metal and subsequently generating a groove in the shape of recess or notch. Unless it is not deep or sharp, an undercut can act as a stress raiser and reduce the fatigue strength of the joint and may lead to premature failure. Overlap is a surface discontinuity generally caused by poor welding practice and selection of the wrong materials. A proper weld is shown in Figure 2.7c.5 1.4.5 Cracks: Cracks may occur in various locations and direction in the weld area. The types of cracks are typically longitudinal, transverse, crater, and toe cracks Figure 2.8. These cracks generally result from a combination of the following factors: Temperature gradients that cause thermal stresses in the weld zone. Variations in the composition of the weld zone that cause different contractions. Embitterment of grain boundaries by segregation of elements, such as sulfur, to the grain boundaries as the solid-liquid boundary moves when the weld metal begins to solidify. Hydrogen embitterment. Inability of the weld metal to contract during cooling is a situation similar to hot tears that develops in castings and related to excessive restraint of the work piece. (a) crater cracks. (b)Various types of cracks in butt and T joints.8 Cracks are classified as hot or cold cracks. Hot cracks occur while the joint is still at elevated temperatures. Cold cracks develop after the weld metal has solidified. Some crack prevention measures are: Change the joint design to minimize stresses from shrinkage during cooling. Change welding-process parameters, procedures, and sequence. Preheat components being welded. Avoid rapid cooling of the components after welding.8 1.4.6 Lameller tears: In describing the anisotropy of plastically deformed metals, we stated that because of the alignment of nonmetallic impurities and inclusions (stringers), the work piece is weaker when tested in its thickness direction. This condition is particularly evident in rolled plates and structural shapes. In welding such components, lamellar tears may develop because of shrinkage of the members in the members or by changing the joint design to make the weld bead penetrate the wearer member more deeply.8 1.4.7 Surface damage: During welding, some of the metal may spatter and be deposited as small droplets on adjacent surfaces. In arc welding possess, the electrode may inadvertently contact the parts being welded at places not in the weld zone (arc strikes). Such surface discontinuities may be objectionable for reasons of appearance or subsequent use of the welded part. If severe, these discontinuities may adversely affect the properties of the welded structure, particularly for notch-sensitive metals. Using proper welding techniques and procedures is important in avoiding surface damage.8 1.5 Skill and Training requirements: Many of the traditional welding processes required high levels of operator skill and dexterity, this can involve costly training programs, particularly when the procedural requirement described above need to be met. The newer processes can offer some reduction in the overall skill requirement but this unfortunately been replaced in some cases by more complex equipment and the time involved in establishing the process parameters has brought about a reduction in operating factor. Developments, which seek to simplify the operation of the equipment, will be described below but effective use of even the most advanced processes and equipment requires appropriate levels of operator and support staff training. The cost of this training will usually be recovered very quickly in improved productivity and quality. 1.6 Areas for development: Advances in welding processes may be justified in: Increased deposition rate; Reduced cycle time; Improved process control; Reduced repair rate; Reduced weld size; Reduced joint preparation time; Improved operating factor; Reduction in post-weld operations; Reduction in potential safety hazards; Removal of the operator from hazardous area; Simplified equipment setting. Some or all these requirement have been met in many of the process developments which have occurred in the ten years; these will be described in detail in the following chapters but the current trends in the of this technology are examined below. 1.7 New processes: The Primary incentive for welding process development is the need to improve the total cost effectiveness of joining operations in requirement for new processes. Recently, concern over the safety of the welding environment and the potential shortage of skilled technicians and operator in many countries have become important considerations. Many of the traditional welding techniques described in this Chapter are regarded as costly and hazardous and it is possible to improve both of these aspects significantly by employing some of the advanced process developments described in the following chapters. The use of new joining techniques such as Friction Stir Welding appears to be increasing since it does not involve melting. The application of these processes has in the past been restricted, but with the increased recognition of the benefits of automation and the requirement for high-integrity joints in newer materials it is envisaged that the use of these techniques will grow. This is a new process originally intended for welding of aerospace alloys, especially aluminum extrusions. Whereas in conventional friction welding, heating of interfaces is achieved through friction by rubbing two surfaces, in the FSW process, a third body is rubbed against the two surfaces to be joined in the form of a small rotating non-consumable tool that is plunged into the joint. The contact pressure causes frictional heating. The probe at the tip of the rotating tool forces heating and mixing or stirring of the material in the joint. 1.8 Research objectives: The objectives of our project are to: Adopt FSW to a milling machine Design the FSW tools, select its material and have it manufactured Design the required clamping system Apply FSW to plates of an alloy that is not readily weldable by conventional methods Investigate FSW parameters (RPM, Feed Rate and Axial force) Analyze conventionally welded and Friction Stir welded sections then compare their properties. The objective of this research is to characterize the mechanical properties of friction stir welded joints and study the micro structure of the base metal and the weld nugget evolved during the friction stir welding of similar and dissimilar alloys of Aluminum. Aluminum 2024 and 7075 are considered for this investigation. The mechanical properties such as ultimate tensile strength, yield strength, formability, ductility and vickers hardness are measured and an effort is made to find out a relation between the process variables and properties of the weld. The optimal process parameters for the Friction-Stir welding of AA2024 and AA7075 will be defined based on the experimental results. Having understood the significance of FSP, the main objective of this thesis is to investigate the effect of process parameters like rotational and translational speeds on the forces generated during FSP of aluminum alloys and relate these forces with the microstructure evolved in order to optimize the process. The specific objectives of the work presented are: Design and conduct FS processing experiments on aluminum alloy for different combinations of rotational and translation speeds. Measuring the generated processing forces during FSP of aluminum alloys Examine the microstructural of the processed sheets using transmission electron microscope (TEM). Attempt to establish a correlation between these measured forces and the resulting microstructure. Chapter 2 Review of Literature 2.1 General Idea of the Friction Stir Technology This section gives an insight into the innovative technology called friction stir technology. The action of rubbing two objects together causing friction to provide heat is one dating back many centuries as stated by Thomas et.al [1]. The principles of this method now form the basis of many traditional and novel friction welding, surfacing and processing techniques. The friction process is an efficient and controllable method of plasticizing a specific area on a material, and thus removing contaminants in preparation for welding, surfacing/cladding or extrusion. The process is environmentally friendly as it does not require consumables (filler wire, flux or gas) and produces no fumes. In friction welding, heat is produced by rubbing components together under load. Once the required temperature and material deformation is reached, the action is terminated and the load is maintained or increased to create a solid phase bond. Friction is ideal for welding dissimilar metals with very different melting temperatures and physical properties. Some of the friction stir technologies ar e shown in the Fig.2-1. Work carried out at TWI by Thomas et.al [2,3] has demonstrated that several alternative techniques exist or are being developed to meet the requirement for consistent and reliable joining of mass production aluminum alloy vehicle bodies. Three of these techniques (mechanical fasteners, lasers and friction stir welding) are likely to make an impact in industrial processing over the next 5 years. FSW could be applied in the manufacture of straight-line welds in sheet and extrusions as a low cost alternative to arc welding (e.g. in the fabrication of truck floors or walls). The development of robotized friction stir welding heads could extend the range of applications into three dimensional components. Mishra et.al [4] extended the FSW innovation to process Al 7075 and Al 5083 in order to render them superplastic. They observed that the grains obtained were recrystallized, equiaxed and homogeneous with average grain sizes 300 rpm no abnormal grain size was observed. Friction stir processing of nanophase aluminum alloys led to high strength ~ 650 MPa with good ductility above 10% [Figure 2-4]. Improvements in ductility were due to a significantly improved homogenization of the microstructure during FSP. The FSP technique is very effective in producing ductile, very high specific strength aluminum alloys, such as the Al-Ti-Cu and Al-Ti-Ni as investigated by Beron et al. [26]. The authors investigated two processes: hot isostatic pressing (HIP) and friction stir process (FSP) and compared the microstructures and corresponding properties resulted from the respective processes on 7075 Al alloy. HIP results in a very high strength alloy with low ductility and inhomogeneous structure. But FSP results in comparatively low strength below 740Mpa but very high ductility at temperatures above 300ÂÂ °C at ~500ÂÂ °C. However the FS processing parameters can be optimized to lower both the operating temperature and time at the temperature in order to improve the strength further. Thus this paper concludes that FSP produces high strength Al alloys with significant ductility. Sato et al. [27] investigated the effect of rotational speed on the microstructure and hardness during friction stir welding of Al 6063-T5. They concluded that the maximum temperature of the welding thermal cycle increased with increase in rotational speed. And also it is observed that the recrystallized grain size increased exponentially with the increasing maximum temperature. Thus they clearly indicated that there is an increase in grain size as the rotational speed increased. Sato et al. investigated the precipitation sequence in friction stir weld of 6063 Al alloy during aging [28] and concluded that post weld annealing at 440K for 12hrs gives greater hardness in overall weld than in the as- received base material and also shifted the minimum hardness from as-welded minimum hardness region to the precipitated-coarsened region. They have also studied the micro-texture of the friction stir welded 6063-T5 Al alloy using orientation imaging microscopy [29]. Sato et al. [30] examined the dominant microstructural factors governing the global tensile properties of a FS welded joint of 6063 Al alloy by estimating the distribution of local tensile properties corresponding to local microstructure and hardness. They concluded that the minimum hardness determined global yield and ultimate tensile strengths of the weld joint. They stated that in a homogeneously hard joint, such as a solution heat treated and aged weld, a fracture was observed to be located in a region with a minimum average Taylor factor (M) which is equivalent to s/tc where s is the applied uniaxial stress and tc the shear stress working on active plane systems. Lockwood et al. [31] studied the global and local mechanical response of FS welded AA2024 both experimentally and numerically. Transverse loaded tensile specimens via the digital image correlation technique obtained full field strain measurements. Assuming an iso-stress configuration, local constitutive data were determined for the various weld regions and were used as input for a 2D finite element model. The numerical results compared well with the experimental results in predicting the global mechanical response especially the strain levels. It was also observed that the global strain level was approximately 4% for both the model and experiment. Mahoney et al. [32] conducted longitudinal and transverse (to the friction stir welded) tensile testing on AA 7075 alloy, which demonstrated that the weakest region associated with FSW was the low temperature location within the heat-affected zone about 7 to 8 mm from the edge of the weld nugget. The yield strength at this location was 45pct less than that of the base metal while; the ultimate tensile strength was 25pct less. Thus concluded that in weldable Al alloys typically, the weld zone would exhibits a 30 to 60 pct reduction in yield and ultimate strengths, hence the losses due to friction stir process were at the lower end of the range for Al alloys. Mitchell et al. [33] performed FSW of ÂÂ ¼ thick AA6061 sheets for eight combinations of rotational and translational speeds. In their work they presented the forces generated especially the transverse and translation forces and also the temperatures. The temperature is measured using thermocouples. They observed that the transverse force was greater than translation force for all the combinations of speeds and feeds. Their work clearly showed that there exists a unique combination of shear and normal forces that produces a friction stir weld and have stated that the understanding of the contribution of two forces and the relationship to each other was important in modeling the FSW process. Jata et al. [34] FS welded Al 7050-T7451 alloy to investigate the effects on the microstructure and mechanical properties. Results were discussed for the as-welded condition (as-FSW) and for a postweld heat-treated condition consisting of 121ÂÂ °C for 24 hours (as-FSW + T6) did not result in an improvement either in the strength or the ductility of the welded material. It was evident from TEM analysis that the FS welding process transformed the initial 1mm sized pancake-shaped grains in the parent material to fine 1to5ÂÂ µm dynamically recrystallized grains. Tensile specimens tested transverse to the weld showed that there was a 25 to 30 pct reduction in the strength level, a 60 pct reduction in the elongation in the as-FSW condition, and that the fracture path was observed in the HAZ. Comparison of fatigue-crack growth rates (FCGRs) between the parent T7451 material and the as-FSW + T6 condition, at a stress ratio of R = 0.33, showed that the FCG resistance of the weld-nug get region decreased, while that of the HAZ increased. 2.3 Studies on Tool and Tool Wear during FSW The tool design plays a very crucial role in friction stir technology. Hence it becomes an important area of study to make the process more efficient. There have been few contributions in this area which can be jotted as follows. The design of the tool is the key to the successful application of the process to a greater range of materials and over a wider range of thickness. A number of different high performance tool designs have been investigated. The investigations by Thomas et al. [35] describe the recent developments using these enhanced tools from the perspective of existing and potential applications. Aluminum alloy plates of thickness 1mm to 50mm have been successfully friction stir welded in one pass and a 75mm thick FSW weld in 6082 T6 aluminum alloy plate. Encouraging results and good performance have been achieved by using the MX TrifluteTM type tools to make single pass welds in a number of materials, from 6mm to 50mm in thickness. Typically, the WhorlTM reduced the displaced volume by about 60%, while the MX TrifluteTM reduced the displaced volume by about 70%. Tool wear in a right-hand-threaded, carbon steel nib reached a maximum at 1000 rpm counter-clockwise rotation speed in the FSW of an aluminum 6061+20 vol. % Al2O3 MMC where the corresponding, effective wear rate was approximately 0.64%/cm as studied by Prado et al. [36]. Above 1000 rpm the wear rate declined. It was approximately 0.42% /cm at 1500 rpm and 0.56%/cm at 2000 rpm. There was no measurable wear and essentially zero wear rate for the same nib rotating at 1000rpm for the FSW of a commercially Al6061 alloy. 2.4 Microstructural studies on friction stirred alloys A basic understanding of the evolution of microstructure in the dynamically recrystallized region of FS material and relation of this with the deformation process variables of strain, strain rate, temperature and process parameters is very essential. This section would give an insight into such studies. Peel et.al. [7] reported the results of microstructural, mechanical property and residual stress investigations of four AA5083 FS welds produced under varying conditions. It was found that the weld properties were dominated by the thermal input (thermal excursion) rather than the mechanical deformation by the tool, resulting in a 30 mm wide zone of equiaxed grains around the weld line. Increasing the traverse speed and hence reducing the heat input narrowed the weld zone. It is observed that the recrystallization resulting in the weld zone had considerably lower hardness and yield strength than the parent AA5083. During tensile testing, almost all the plastic flow occurred within the recrystallized weld zone and the synchrotron residual stress analysis indicated that the weld zone is in tension in both the longitudinal and transverse directions. The peak longitudinal stresses increased as the traverse speed increases. This increase is probably due to steeper thermal gradients during welding and the reduced time for stress relaxation to occur. The tensile stresses appear to be limited to the softened weld zone resulting in a narrowing of the tensile region (and the peak stresses) as the traverse speed increased. Measurements of the unstrained lattice parameter (d0) indicated variations with distance from the weld line that would result in significant errors in the inferred residual stresses if a single value for d0 were used for diffraction based experiment. The evolution of the fine-grained structure in friction-stir processed aluminum has been studied by Rhodes et.al. [8] using a rotating-tool plunge and extract technique. In these experiments, the rotating tool introduced severe deformation in the starting grain structure, including severe deformation of the pre-existing sub-grains. Extreme surface cooling was used to freeze in the starting structure. Heat generated by the rotating tool was indicated as a function of the rotation speed and the external cooling rate. At slower cooling rates and/or faster tool rotation speeds, recrystallization of the deformed aluminum was observed to occur. The initial sizes of the newly recrystallized grains were in the order of 25-100 nm, considerably smaller than the pre-existing sub-grains in the starting condition. Subsequent experiments revealed that the newly recrystallized grains grow to a size (2-5ÂÂ µm) equivalent to that found in friction-stir processed aluminum, after heating 1-4 min a t 350-450 ÂÂ °C. It is postulated that the 2-5 ÂÂ µm grains found in friction-stir welded and friction-stir processed aluminum alloys arose as the result of nucleation and growth within a heavily deformed structure and not from the rotation of pre-existing sub-grains. Sato et.al [9] applied FSW to an accumulative roll-bonded (ARBed) Al alloy 1100. FSW resulted in reproduction of fine grains in the stir zone and small growth of the ultrafine grains of the ARBed material just outside the stir zone. FSW was reported to suppress large reductions of hardness in the ARBed material, although the stir zone and the TMAZ experienced small reductions of hardness due to dynamic recrystallization and recovery. Consequently, FSW effectively prevented the softening in the ARBed alloy which had an equivalent strain of 4.8. The microstructure evolution of a joint of Al-Si-Mg alloys A6056-T4 and A6056-T6 was characterized using transmission electron microscopy (TEM) by Cabibbo et.al. [10]. Metallurgical investigations, hardness and mechanical tests were also performed to correlate the TEM investigations to the mechanical properties of the produced FSW butt joint. After FSW thermal treatment was carried out at 530 ÂÂ °C followed by ageing at 160 ÂÂ °C (T6). The base material (T4) and the heat-treated one (T6) were put in comparison showing a remarkable ductility reduction of the joint after T6 treatment i.e., it was 80-90% of that of the parent material. The microstructure of a FSW Al-6.0Cu-0.75Mg-0.65Ag (wt.%) alloy in the peak-aged T6 temper was characterized by TEM by Lityska et.al. [11]. Strengthening precipitates found in the base alloys dissolved in the weld nugget, while it was observed that in the heat-affected zone Cu) and s (Althey were coarsened considerably, causing softening inside the weld region. Precipitates of the O (Al2Cu) phase, was considered as the main strengthening phase in base material, grew up to 200-300 nm in the heat-affected zone, but their density decreased. It was observed that they co-existed with F'(Al2Cu), S'(Al2CuMg), F(Al25Cu6Mg2) phases. The density of the F and S phases as well as their sizes increased in comparison to the base material. The high-resolution observation allowed them to compare the morphology of the O phase plates in the heat-affected zone and in the base material. The grain structure, dislocation density and second phase particles in various regions including the dynamically recrystallized zone (DXZ), thermo-mechanically affected zone (TMAZ), and heat affected zone (HAZ) of a FSW aluminum alloy 7050-T651 were investigated and compared with the unaffected base metal by Su et.al. [12]. The various regions were studied in detail to better understand the microstructural evolution during FSW. They concluded that the microstructural development in each region was a strong function of the local thermo-mechanical cycle experienced during welding. Using the combination of structural characteristics observed in each weld region, a new dynamic recrystallization model was proposed. The precipitation phenomena in different weld regions were also discussed. The laser beam and friction stir processes were applied to the ECA pressed Al alloy 1050 with the thickness of 1 mm by Sato et.al. [13]. The ECA pressed alloy after two passes through the die consisted of cell structure with cell size of about 0.58 ÂÂ µm, and the hardness value was approximately 46 Hv. The LBW produced as-cast coarse microstructure and coarse equiaxed grain structure at the fusion zone and the HAZ respectively, which led to the hardness reduction to

Monday, May 18, 2020

The Frontiers of American History in Last Child of the...

In the second chapter of Last Child of the Woods, Richard Louv makes the claim that there have been three frontiers in the course of American history. The first phase was the original frontier, before the Industrial Revolution. This was the time of the prairie schooner, the cowboy, the herds of bison that were thousands strong. This was a rough, hard time, when man and nature were constantly thrown together. There was wilderness to spare, and people were willing to move West to get to it. The second phase came into being after the Industrial Revolution. Land that was available to homesteaders had run out. Yet the American people still considered themselves frontier explorers. Times had been trying during the Westward Expansion,†¦show more content†¦Not only are they taught that building things outside are bad, but because of the disappearance of natural spaces within cities, nature is not as accessible to kids. This leads to what Louv calls, Nature Deficit Disorder, the lack of relationship between children and nature. Richard Louv uses Logos in several different ways throughout this selection. He collects research from many different studies, interviews parents, and finds sources from history. In his second chapter especially, he uses numerous examples of scientific experiments to back his point that people really do not have an adequate realization of the difference between humans and animals. In his third chapter, he conducted an interview with a parent who had moved to a certain neighborhood because of the abundance of outdoor areas. Louv uses this interview to illustrate his point that even if nature is available, it really is not supposed to be used for unstructured recreation. In his second chapter, he draws on U.S. Census Bureau reports to illustrate the decline of the family farm. He uses historical events and ideas to show his idea of the romanticizing of the American frontier. Through these concrete examples, he is able to persuade the reader that his ideas and theories are vali d. I think that Louv is right in his opinion that kids are losing touch with nature. This epidemic is not just in big cities, but wherever technology has a hold. Technology has become

Wednesday, May 6, 2020

Fairy Tales by Jakob and Wilhelm Grimm - 1359 Words

Introduction: Fairy tales were a big part of my childhood. I started my research on fairy tales written by Jakob and Wilhelm Grimm. Fairy tales often have a character that goes on a journey or an adventure. During his journey he encounters mystical beings that help or hurt the characters success. When I was a child, my grandparents would tell my sister and I stories like â€Å"Jack and the Bean Stalk† and â€Å"Little Red Riding Hood†. My grandfather would always act out the part of the wolf or the giant, while my grandma told the story. The fairy tales by the brothers Grimm were very popular and some were retold by Disney. But Disney’s versions were much less graphic than the original tales. I believe that fairy tales are a big part of child’s†¦show more content†¦They wrote tales like â€Å"Little Red-Cap†, where a little girl is tricked by a wolf into getting herself and her grandmother eaten. Luckily a hunter saves them by cutting open the wolfâ€⠄¢s stomach. Jakob, the smarter of the two, went on in later years â€Å"to define the relationship between similar word of different languages, this became known as Grimm’s law† (O’Neill, par.8). Both brothers were professors at the University of Gottingen. Both were dismissed for political reasons. They then moved to Berlin, where they again became professors and were professors until they died (O’Neill, par.9). Many of stories they published were very unique which is probably why they became so popular. One unique characteristic that relates to all of all the stories I read by the brothers Grimm was that a problem arises with magic and is resolved with violence. In â€Å"Little Red Cap†, the wolf can talk and it eats the grandmother and girl whole. The problem that arises in â€Å"The Seven Ravens† is the daughter of a king and queen discovers that her parents had her seven brothers turned in to ravens. The violent solution to â€Å"Litt le Red-Caps† problem is they are saved by a hunter that cuts open the wolf’s stomach. In the â€Å"The Seven Ravens† the daughter goes on a journey to find the key of her brothers’ glass mountain prison. She loses the key but instead she cuts off a finger and uses that. Even though the characters and plot twists in each story are violent and graphic, theShow MoreRelatedJakob and Wilhelm Grimm Essay1576 Words   |  7 Pagesdream of. In the Grimm Brothers’ stories, the male characters were usually the ones that would get themselves into trouble. This essay will analyze the life and fiction of Jakob and Wilhelm Grimm. It will employ a literary analysis that focuses on the principle of female characters to gain a more thorough understanding of the following three short stories: â€Å"Rapunzel†, â€Å"The Brother and Sister†, and â€Å"Gambling Hansel.† Jakob and Wilhelm were born a year apart from each other. Jakob was born in 1785Read MoreThe Cinderell Life Lessons879 Words   |  4 Pagesfolklore, tales, or fable is to pass history and life lessons from one generation to another. Many of the stories that are told today are from different backgrounds and countries from China all the way back to the Native Americans. The stories that children hear today are about good and evil, and that life is not always fair but good things will happen in the end. They teach people how to handle the difficult things in life by making good choices in life regardless of the situation. The fairy tale CinderellaRead MoreAnalysis Of Cinderella By Jakob And Wilhelm Grimm 1045 Words   |  5 PagesAnalysis of â€Å"Cinderella† Majority of fairy tales, including â€Å"Cinderella† by Jakob and Wilhelm Grimm, have a complex moral along with life lessons behind the story line. Due to this, famous scholars such as Maria Tatar, study these fairy tales. In Tatar’s essay, she states that â€Å"Even fairy tales, with their naà ¯ve sense of justice, their tenacious materialism, their reworking of familiar territory, and their sometimes narrow imaginative range, rarely send unambiguous messages† (232). She is statingRead MoreSnow White And The Seven Dwarfs1385 Words   |  6 Pagesthe tale is much different from the Brothers Grimm version, â€Å"Snow White†. Before this tale was modified by Disney, it was much darker. This story, and many other stories were also much more grim before Disney changed them. In interpretations of Walt Disney’s â€Å"Snow White† and the Grimm brothers â€Å"Snow White†, there are definitive comparisons that can be made, the history behin d the Grimm brothers contribute to the story as a whole, and children and society reacted in different ways to the tale. TheRead MoreTheme of Stereotypes Essay1961 Words   |  8 PagesTheme of Stereotypes One of the main themes that I noticed when I was reading through the fairy tale texts was the theme of stereotypes. Firstly, what are stereotypes? Stereotypes are essentially an offensive generalization or an over exaggerated view that is used to categorize a group of people. I noticed that in two of the three texts that I have selected for this paper, the authors, Jakob Grimm and Wilhelm Grimm, tend to portray women as being very dependent on men. In addition, to being depictedRead MoreCinderella Argument Paper726 Words   |  3 Pagesï » ¿From generation to generation stories are always changing. Fairy tales like Cinderella go from mean step sisters to nice sisters, fairy god mother to a tree. After reading 5 different versions of Cinderella I had to choose which I would decide to read, above the others to my favorite child. After difficult thinking I have chosen the Walt Disney’s version of Cinderella for many great reasons. I have chosen the Walt Disney’s version because I feel it is the most fitting for children over all the othersRead MoreCupid and Psyche: Myth or Folktale?1023 Words   |  5 Pagesof the universe and of the earth. (Thompson, 106) On the other hand, some might say that folktale is defined as an anonymous story, that originates and circulates orally among a people (Harris and Platzner, 1054), or even that folktales involve a fairy god mother and dancing mice. However, there seems to be many similarities between the two concepts, and the story of Eros and Psyche is no exception. This story entails many mythic characteristics as well as many features of a folktale. Though theRead MoreCinderellas Stepmother Not so Evil After All1830 Words   |  8 PagesA Walk in Her Shoes; the Stepmother not Cinderella Did you ever notice that â€Å"happily ever after† seems to only take place in fairy tales? In the real world, couples get married, have children and, more often than not, end up getting divorced. The time following divorce can be lonely but many people will enjoy the time alone. Eventually, a search begins for a new mate and ultimately they will remarry. Sometimes the new spouse also has children and this creates a blended family, such as in the storyRead MoreEssays on Vehicular Pollution3733 Words   |  15 Pagesof the style and its origins. Origins: Folklore and Popular Art Some of the earliest stirrings of the Romantic movement are conventionally traced back to the mid-18th-century interest in folklore which arose in Germany--with Jakob and Wilhelm Grimm collecting popular fairy tales and other scholars like Johann Gottfried von Herder studying folk songs--and in England with Joseph Addison and Richard Steele treating old ballads as if they were high poetry. These activities set the tone for one aspect ofRead MoreEssays on Vehicular Pollution3726 Words   |  15 Pagesthe style and its origins. Origins: Folklore and Popular Art Some of the earliest stirrings of the Romantic movement are conventionally traced back to the mid-18th-century interest in folklore which arose in Germany--with Jakob and Wilhelm Grimm collecting popular fairy tales and other scholars like Johann Gottfried von Herder studying folk songs--and in England with Joseph Addison and Richard Steele treating old ballads as if they were high poetry. These activities set the tone for one aspect of

Deception in the Twelfth Night free essay sample

Deception is seen widely throughout the play Twelfth Night by William Shakespeare. Many characters are very clear about who they are and what their motives are, while some are more manipulative. Deception is shown through the clearness of Orsino’s character and the way Viola (Cesario) deceives people to play a man. Orsino is a character in the Twelfth Night that is considered much understood. He is very upfront about his actions and motives. This is portrayed in the way that Orsino loves Olivia and the way he will do anything it takes to get her to be with him. He makes it very clear that there is only one thing that he wants: to be with Olivia. As Orsino states his love in the play, â€Å"Oh, when mine eyes did see Olivia first, methought she purged the air of pestilence. That instant was I turned into a hart, and my desires, like fell and cruel hounds, e’er since pursue me† (1. We will write a custom essay sample on Deception in the Twelfth Night or any similar topic specifically for you Do Not WasteYour Time HIRE WRITER Only 13.90 / page 1. 20-24). He is very upfront about who he is; as the count, he is better than the people around him and gets what he wants. The way that Olivia thinks so highly of him as a Duke, demonstrates how he is better than the people around him: â€Å"Yet I suppose him virtuous, know him noble, of great estate, of fresh and stainless youth. In voices well divulged, free, learned, and valiant; and in dimension and the shape of nature, a gracious person† (1. 5. 260-64). Orsino is a noteable character who is straightforward and determined to get what he wants. Viola (Cesario), on the other hand, is completely deceptive of who she is. Although she deceptively dresses as a man, Viola does it so that she can stay alive in Illyria. The Captain is the only one who really knows what Viola is doing. As the Captain says, â€Å"Be you his eununch, and mute I’ll be. When my tongue blabs, then let mine eyes not see,† (1. 3. 65-66) which he also knows the reasons of doing. Throughout the entire play, Viola has to lie about who she is, but hints about her secret occasionally, like when she speaks with Orsino: â€Å"I am all the daughters of my father’s house, and all the brothers, too—and yet I know not†.   Viola is a main example of a character that is deceptive by their appearance in the Twelfth Night. Deception is being deceived or mislead by false appearances or statements. There are different kinds of deception in the Twelfth Night, by appearance or by Shakespeare’s word choice. Deception by appearance is an easily seen trait throughout different characters in the play. Orsino is a great example of someone who is the opposite of deceptive, whereas Viola is one of the most deceptive by her appearance and can be seen throughout the play the Twelfth Night.